Join Preserving Maps, Fuzzy Preorders and Alexandrov Fuzzy Topologies
نویسندگان
چکیده
In this paper, we investigate the properties of join preserving maps in complete residuated lattices. We define join approximation operators as a generalization of fuzzy rough sets in complete residuated lattices. Moreover, we investigate the relations between join preserving operators and Alexandrov fuzzy topologies. We give their examples. AMS Subject Classification: 03E72, 03G10, 06A15, 06F07
منابع مشابه
Some Properties of Alexandrov Topologies
Alexandrov topologies are the topologies induced by relations. This paper addresses the properties of Alexandrov topologies as the extensions of strong topologies and strong cotopologies in complete residuated lattices. With the concepts of Zhang’s completeness, the notions are discussed as extensions of interior and closure operators in a sense as Pawlak’s the rough set theory. It is shown tha...
متن کاملL-upper Approximation Operators and Join Preserving Maps
In this paper, we investigate the properties of join and meet preserving maps in complete residuated lattice using Zhang’s the fuzzy complete lattice which is defined by join and meet on fuzzy posets. We define L-upper (resp. L-lower) approximation operators as a generalization of fuzzy rough sets in complete residuated lattices. Moreover, we investigate the relations between L-upper (resp. L-l...
متن کاملJoin-meet Approximation Operators Induced by Alexandrov Fuzzy Topologies
In this paper, we investigate the properties of Alexandrov fuzzy topologies and join-meet approximation operators. We study fuzzy preorder, Alexandrov topologies join-meet approximation operators induced by Alexandrov fuzzy topologies. We give their examples.
متن کاملFUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE
This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.
متن کاملThe Properties of L-lower Approximation Operators
In this paper, we investigate the properties of L-lower approximation operators as a generalization of fuzzy rough set in complete residuated lattices. We study relations lower (upper, join meet, meet join) approximation operators and Alexandrov L-topologies. Moreover, we give their examples as approximation operators induced by various L-fuzzy relations.
متن کامل